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A stability c r i t e r ion  is obtained for a low-voltage arc  in the absence of ionization equilibrium. 
It is shown that the stabili ty depends on the p roper t i es  of the generation function. The example 
of a ces ium arc  of a thermionic  conver te r  i l lustrates  the influence of a change of the e lectron 
tempera tu re  on the stabili ty of a plasma.  

1. The a im  of this paper  is to investigate t he  stability of a low-voltage arc  with nonequilibrium gen- 
erat ion function in a prac t ica l ly  important  example - a ces ium thermionic conver ter .  The generat ion func-  
tion may depart  f rom equilibrium under the conditions of a ces ium arc  for many reasons  - depletion of 
the ntafl TM of the Maxwellian distribution, the presence  of beam elect rons ,  escape of radiation, diffusion of 
excited atoms.  The influence of each of these fac tors  separate ly  o r  together  on the fo rm of the function has 
been studied on many occasions,  since the generat ion function is important  for the design of the arc  and 
the const ruct ion of the c u r r e n t - v o l t a g e  cha rac te r i s t i c  of the conver ter .  

Many people have noted that to cons t ruc t  the c u r r e n t - v o l t a g e  charac te r i s t i c  it is important  to know 
the integral p roper t i es  of the generat ion function, whereas  the more subtle proper t ies  of this function are 
important  for the stability. 

Without res t r i c t ing  ourse lves  to any par t i cu la r  form of the generat ion function, we formulate  the p rob-  
lem as follows: What proper t ies  must the generation function have for  the sys tem to be unstable? 

2. If the gradients  of the e lec t ron  t empera tu re  can be ignored, a low-voltage arc  in ces ium vapor is 
descr ibed by the equation of ambipolar  diffusion and the equation of e lectron heat conduction [1]: 

- -  Dc, d2n / dx ~ = ~z 2 (Te) F (n) (2.1) 

/ V  = 2Tel  ~ (Te / Te - -  1) q- I vinl (2.2) 

where D a is the coefficient of ambipolar  diffusion, n is the p lasma density, j is the cu r r en t  density, V is the 
potential difference ac ros s  the gap, I is the effective ionization potential, T c is the cathode tempera ture ,  x 
is the coordinate perpendicular  to the surface of the e lect rodes ,  F (n) is a nonmonotonic function of the 
p lasma density, a 2 (Te) is the generat ion function as a function of the tempera ture  of the e lectrons,  and 
vi is the the rmal  veloci ty of the ions. 

The function F (n, Te) in the general  ease  cannot be represen ted  as a product,  though, as we shall see 
below, in this case  this is not important  and is introduced for c lar i ty .  Allowance for the escape of radiation 
in the energy-balance  equation does not lead to quali tatively new results~and, therefore ,  in what follows it 
will be ignored for  simplicity. To (2.1) and (2.2) one must  add the boundary conditions for a developed 
arc [i] : 

( - - - ~  ) ,  adz  :r 2 (2.3) 
] = ln" - -  --~n've exp @c D ct,~ nlv 

] = - -~  exp -- ~ , a dx x=d - -  T (2.4) 
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where n 1 and n 2 are  the plasma density at the cathode and the anode; qc and qa are  the discontinuities of 
the potential at the e lectrodes;  Ve is the thermal  veloci ty of the e lectrons;  and 2d is the distance between 
the cathode and the anode (the gap). Because of the symmet ry  of the boundary conditions (2.3) and (2.4), 

n 1 = ~ .  

Equation (2.1) is s imi lar  to the equation of motion of a part icle in a potential well with energy u = 
7+ 

IF(n) dn, the role of the par t ic le  coordinate being played by n and the role of the t ime by x. To within a 
0 

t e rm of order  l/d, the p lasma density on the boundary can be set equal to zero  (l is the electron mean 
free path). Then the problem consis ts  of finding a point N =n (x=0) such that if the par t ic le  begins its 
motion at this point with ze ro  velocity [because of the symmet ry  of the solution (dn/dx) x =o = 0] it a r r i ve s  
at the point with coordinate n=0 in a "t ime" equal to a given value (half the gap d). Integrating (2.1), we 

obtain 

N 

We shall call  ~- (N) the period. Going over  in (2.5) to integration over u, we can write 

E �9 (E)~--~ ! (dn/du) duvE__u (2.6) 

where E =u (N) is the "total energy w of the part icle.  

Depending on the form of the potential u (n), r is, a function of the amplitude N [or ~-(E)] may be non- 
monotonic [2], i.e., to one value of T, or  vz, there  may cor respond  two or  more values of N. It is neces sa ry  
to establish what proper t ies  the t fo rce"  F must have if ~ (N} is to be a nonmonotonic function. For  this, 
using the integral Abel equation (2.6) we must  express  u (n) in t e rms  of ~- (N) [3]: 

| ~ ~(E)dE (2.7) 

Since F -> 0, the dependence of u on n [or E (N)] is monotonic - u and n are  related one- to-one;  know- 
ing n (u) we can find u in). Specifying different nonmonotonic dependences T i N) one can show that non- 
unique solutions (2.17 can also hold for smooth functions F in), and F in) may even change curvature .  

The multivaluedness of the solutions depends on subtle proper t ies  of the generat ion function, and 
therefore  an approximate method used to determine the ambiguity of the solution f rom the form of the func-  
tion F (n), used, for  example, in [2, 4], is res t r ic ted .  

If there  are  two or  more  solutions, the solutions for  which aT/~N < 0 are  unstable and the solutions 
with a~-/aN > 0 are  stable. This will be proved below under the assumption that the e lectron tempera tu re  
does not change. 

3. To determine the instability region as a function of the external  p a r a m e t e r s  (current,  voltage, 
etc.), it is neces sa ry  to cons t ruc t  the cu r r en t -vo l t age  charac te r i s t ic  of the are.  The potential difference 
ac ros s  the gap is composed of the potential difference ac ros s  the plasma,  ~p, and the difference of the 
electrode discontinuities of the potential. To within a quantity of o rder  of I/d, the la t ter  can be found f rom 
the boundary conditions with allowance for  n I =n2: 
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% - % = r ~  in  i / iR ( l  - -  i I iR) (3.1) 

The potential drop ac ros s  the p lasma can be found by integrating the equation for  the e lec t ron current :  

is = - -  De dn / dx ~ uend( p I dx (3.2) 

where u e is the e lectron mobility and r is the potential of the plasma. 

Since the var ia t ion  of the e lec t ron  cu r ren t  over  the gap is small ,  with allowance for  (2.5) we obtain 

N 

% 
_ _  n (~,) ~ ( N )  us n [u ( N ) - -  u (n)]  '1' 

The value of n i can be found f rom (2.3) by noticing that this is the "velocity" of the par t ic le  at the end 
of the t ra jec to ry :  

nl (N) = 2 ~ r ~  (N) a (N) i vi (3.4) 

Using (3.4) we must  eliminate n 1 f rom (3.3) and (2.2). The total voltage ac ros s  the gap can be ob- 
tained from (3.1) and (3.8): 

V = % -- ~ § ~v (3.5) 

For  the two unknowns V and N (we assume the cur ren t  is given) we have the two equations (2.2) and 
(3.5). These equations constitute the c u r r e n t - v o l t a g e  charac te r i s t i c  in pa ramet r i c  form (N is the p a r a m -  
eter) .  If F - n, then all the integrals  can be expressed  in e lementary  functions and the c u r r e n t - v o l t a g e  
charac te r i s t i c  is obtained with a section of negative differential res i s tance  (see curve 1 in Fig. 1) [1]. As 
follows from (2.5), the dependence T e (N) is a straight  line paral le l  to the absc issa  (see curve  1 in Fig. 2). 
If T e depends nonmonotonically on N (the curves  2 and 3 in Fig. 2) the nonmonotonicity of V as a function of 
j is expressed  to a g rea te r  degree than when T e =const  (curves 2 and 3 in Fig. 1). 

Although ~ may va ry  appreciably,  T e va r i es  little, since ~ usually depends on the e lec t ron t e m p e r a -  
ture  exponentially: 

a 2  = a~) ~'e-sir s (3.6) 

At low cu r r en t s  through the device, N is small.  Almost  all the potential difference occurs  a c r o s s  
the plasma.  This section of the c u r r e n t - v o l t a g e  cha rac te r i s t i c  can be obtained f rom (2.2). Since N is 
small ,  the ionization losses  can be ignored, and therefore  V =2T e ( T e / T c - 1 )  JR/J and the voltage dec reases  
with increas ing current ,  dV/dj  < 0. If T e (N) is nonmonotonic, the t empera tu re  dec reases  with increasing 
N (at low plasma densit ies and therefore  at low currents) .  This means that dV/dj  becomes  even smal ler .  
With increas ing N, the potential difference a c r o s s  the plasma, qp, dec reases  and the main losses  of energy 
f rom the p lasma are ionization losses :  

IV = 2 1 / 2Dau (N) Ia  (N) (3.7) 

Multiplying (3.1) by j and ignoring qp, we obtain 

2 V'2--~u (N) Ia  (N) = Tel lh ] / ]R (1 --  ] / ]a) (3.8) 

It can be seen f rom (3.8) that with increas ing N the cur ren t  density increases ,  and then so does V in 
accordance  with (3.1). Since Te increases  with increas ing N at high densit ies (see Fig. 2), the derivative 
dV/dj is g rea te r  than in the case  T e =const .  These conclusions agree  qualitatively with the calculat ions of 
a thermionic  conver t e r  on a computer  made in [51, where it was shown that when allowance is made for the 
escape of resonance radiat ion and the diffusion of excited atoms the negative section of the c u r r e n t - v o l t a g e  
charac te r i s t i c  is appreciably  increased.  Allowance for the escape of resonance radiation and diffusion of 
excited atoms means that the generation function at low plasma densit ies is proport ional  to n 2. In this case  

(and, accordingly,  Te) is a nonmonotonie function of N, as was assumed above. For  some discharge 
pa rame te r s ,  the point 0r/0N =0 may lie on a section of t h e c u r r e n t - v o l t a g e  charac te r i s t i c  with d j /dV > 0. 
This means that the instability can also occur  on a positive section of the charac te r i s t i c  (see curve 2 in 
Fig. 1). 

4. The instability condition is derived with neglect of per turbat ions  of the e lec t ron tempera ture .  We 
now obtain conditions under which this is justified. 
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Varying (2.3) and (2.4), we find 

61" IR 5n~--~nl 61' V 4- 6V (4.1) 

d v~ -- Da d~ 6n I~=a = T Da ~ 6n I~=-a = - ~  6nl, ~ 6n2 (4.2) 

Let us cons ider  the case  of high cu r r en t s ,  which is  c l e a r l y  of m o s t  in teres t .  In th is  case ,  the poten-  
t ia l  difference a c r o s s  the p l a s m a  can be ignored. The nonsta t ionary equation for  the pe r tu rba t ions  of the 
e lec t ron  t e m p e r a t u r e  has the fo rm 

VS] + / S V  = 2]RST + 1]2IYt (Snl ~- 5n2) -~ 2nky~dST -- 3FdN6T (4.3) 

where  vt is the coefficient  of e lec t ron  t h e r m a l  conductivity.  

In (4.3) we cons ider  per tu rba t ions  of the p l a s m a  p a r a m e t e r s  along the e lec t rodes  with wavelength 
X =2~/ky, the i r  t ime  dependence being r ep re sen ted  in the fo rm exp ( -  Ft). 

Together  with the nonsta t ionary  equation of ambipo la r  diffusion for  the per tu rba t ions  

d~ ~OF [ -l- On2 (4.4) --  F6n + D~k~,~6n --  Da 6n = ct ~ I~=,~(~) 6n F ~ 5T 

Eqs. (4.1)-(4.3) f o r m  a c losed  s y s t e m  of homogeneous equations, f r o m  which the decay ra te  F c a n  be 
determined.  

It is not poss ib le  to obtain a solution of (4.4) in the genera l  case .  We must  t he re fo re  cons ider  how 
the s tabi l i ty  is affected by the t e r m  with 5T in (4.4), whose p r o p e r t i e s  without this  t e r m  will be inves t i -  
gated below. 

Fo r  the same  r ea sons  as  in the s ta t ionary  case  

~nl = 6n~ (4.5) 

This  enables  us to omit  (6n l -6n2)  in (4.1). Depending on the load re s i s t ance ,  one must  cons ider  
s eve ra l  c a se s .  

The ca se  6V =0 can occur  when in the externa l  c i rcu i t  the voltage is given or when, for  given cu r ren t ,  
one has pe r tu rba t ions  along the e lec t rodes ,  ky ~ 0. Suppose ky - -  0. 

As follows f rom (4.1), the cu r r en t  and the t e m p e r a t u r e  v a r y  in antiphase.  With allowance for  (4.2), 
we obtain the connection between the per tu rba t ion  of the t e m p e r a t u r e  and the densi ty 6 n 1 on the boundary: 

a T  - -  IVinl hal (4.6) 
T e V~]'([ R - - t ) / T e ] ' R  -~-2[Rl'e. nl 

Substituting (4.6) into (4.4), we find that  the per turba t ion  of the t e m p e r a t u r e  in the given case  is a 
s tabi l iz ing influence. For  c u r r e n t s  j ~ JR this  influence can  be ignored if 

V V ~  e % / T e < l  (4.7) 

For  la rge  c u r r e n t s  (j ~ jR ) the second t e r m  on the r ight  side of (4.4) is g r e a t e r  than the f i r s t  and the 
ra t io  of these  t e r m s  is of o r d e r  

T--~ V - .~-e  a e z >  t 

In this case  the s tate  of the p l a s m a  is stable.  

If 6j =0 and ky=0 ,  a va r ia t ion  in the ex te rna l  c i rcu i t  i nc rea se s  the t e m p e r a t u r e :  

6V V 6T 
1' e T e Te 

and at c u r r e n t s  near  JR an inc rease  of the t e m p e r a t u r e  i n c r e a s e s  the p l a s m a  density: 

5T Iv in l  5nj. 
l"e [V m 

Such a dependence enhances the instabil i ty.  
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If 5V =0, ky ~ 0, j ~ JR, the high e lec t ron  t he rma l  conductivi ty will equalize the per tu rba t ion  of the 
e lec t ron  t e m p e r a t u r e ,  reducing the s tabi l iz ing influence. F o r  this,  ky must  be sufficiently la rge :  

V W  " ~  4k~ d 

On the other  hand, waves  that a r e  too shor t  would be damped because  of diffusion of pa r t i c l e s  along 
the e lec t rodes .  If this  is not to happen, we requ i re  

ky2d 2 ~ dW I Do 

Thus 

(I  / Te) 2 V - m - ~  ~ 4k,, ~ d 2 . ~  4d2r /D~ (4.9) 

If these  condit ions a r e  sat isf ied,  the t e r m  with F in (4.3) is smal l  and the va r i a t ion  of the e lec t ron  
t e m p e r a t u r e  can be ignored. One can  e s t ima te  F by sett ing it equal in o r d e r  of magnitude to the der iva t ive  
of the ra te  of ionization, since the p r o c e s s  of nonequi l ibr ium ionization is respons ib le  for  the instabili ty.  
F o r  the c h a r a c t e r i s t i c  condit ions of opera t ion  of the c o n v e r t e r  cons idered ,  for  example ,  in [5] (PCs =1 m m  
Hg, JR =0.66 A, d =0.5 mm,  T e =3000~ the r a t e  of ionization is p ropor t iona l  to n 2 and t h e r e f o r e  4Fd2/Da 
1. The condition (4.9) can  be sa t i s f ied  and in the s y s t e m  an instabi l i ty  can t he re fo re  develop with c h a r a c -  
t e r i s t i c  wavelengths  exceeding the gap width by an o rde r  of magnitude. 

5. We prove  that  the decay ra te  F has the s a m e  sign as  the der iva t ive  0 T/ON. The equation for  the 
pe r tu rba t ion  of the p l a s m a  densi ty in the gap without al lowance for  the per tu rba t ion  of the t e m p e r a t u r e  is 

~2 (~2 OF 6n (x) (5.1) - - F S n - - D ~ S n =  ~ l  . . . . .  ) 

In (5.1) the t ime  dependence is chosen  in the fo rm exp ( -  Ft) and n o is the s ta t ionary  solution. 
introduce the new notation 

We 

d~2  ~ O F  n=,dx) d~'l--~-~ E, = U (x), 6n ~ ~ (x) (5.2) 
D a --= D a On 

With al lowance for  this ,  (5.1) can  be wr i t ten  in the f o r m  

- -  ~p" -~ g (x) ~p = E~p (5.3) 

with the boundary conditions ~b ( -1 )  =r =0. 

In (5.3) the coordinate  x is made d imens ion less  by division by d. This  equation has  the f o r m  of a 
Schr6dinger  equation for  a pa r t i c l e  with potent ial  U (x). Depending on the f o r m  of the s ta t ionary  solution 
n (x), i .e. ,  on the f o r m  and depth of the potent ial  well U (x), the ene rgy  levels  may  be negative or  posi t ive.  
ff the lowest  level  E 0 is negative,  the s y s t e m  is unstable;  if posi t ive,  stable,  since F and E have the same 
sign. The p r o p e r t i e s  of this  ground state will be invest igated subsequently.  We show f i r s t  that  the sign of 
the ground level  is the s ame  as  the sign of the function ~ (x=1),  which is a solution of the equation 

with the boundary conditions 

- ~" + u (~)~ = 0 (5.4) 

&p 

(Cauchy problem).  

Fo r  E 0 =0, the solutions of Eqs.  (5.3) and (5.4) a r e  the same ,  and then ~0 (1) =0. If ~ (1) < 0, the re  is 
a point x 0 < 1 such that  ~ (x 0) =0. Since the number  of ze ros  on the in terval  ( -  1, 1) is a monotonic function 
of the ene rgy  [6], and the energy  co r respond ing  to the function q~ (x) is ze ro ,  the ene rgy  E 0 co r respond ing  
to the ~ n c t i o n  r (x), which has no z e r o s  on the given interval ,  is l e s s  than zero .  If ~ (1) > 0, then because  
q~ (x) in this  c a s e  has no z e r o s  (see below) on the in te rva l  ( - 1 ,  1), the point x 0 l ies  to the r ight  of unity. 
Since ~b (x) van i shes  ove r  the extended in terval  ( - 1 ,  x 0) (at the point x = D ,  the energy  co r re spond ing  to it 
is  g r e a t e r  than zero .  

The sign of the function ~ (x) for  x = l  coincides  with the sign of the energy  level  of the eigenvalue 
p r o b l e m  (5.3). It is n e c e s s a r y  to ca lcula te  the value of this  function at x=  1. 
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One solut ion  of Eq. (5.4) is  known: 

r = dno/dx (5.5) 

Th i s  can  be seen  by subs t i tu t ing  (5.5) in (5.3) and c o m p a r i n g  the  r e s u l t i n g  equa t ion  with the  d i f f e r e n -  
t i a ted  Eq. (2.1). 

We find a second solut ion  q~ (x) of (5.4) f r o m  the condi t ion  of  c o n s e r v a t i o n  of the Wronskian :  

qh'q~2 --  %'  %' = C 2 

We obta in  

Since 

q~ (x) = Ci% -4- C~qh i r ~dz(x) (5.6) 
--1 

N 

r  = [(2a~/D.) I Fdn]'/'>O 
0 

we find C 1 =0 f r o m  the condi t ion  ~v ( - 1 )  =0. F r o m  C 1 =0 we find (de / dx) > 0 . Note he re  that ,  by  the 

a l t e r n a t i o n  of z e r o s  t h e o r e m  [6], the  funct ion ~0 has  no z e r o s  on (0, - 1 ) .  

The  solut ion  of  (5.6) with C 1 --0 does  not app ly  f o r  x > 0, s ince  when x =0 the In t eg ra l  d i v e r g e s  on 
account  of  r (0) ; 0 .  T h e r e f o r e ,  fo r  x > 0 the  solut ion  of  (5.4) c a n  be wr i t t en  In the f o r m  

1 
�9 dx 

~ (z) = A'91 (z) + C(% I ~ 
:r 

(5.7) 

The  c o n s t a n t s  C l '  and C 2' a r e  found f r o m  the condi t ions  of cont inui ty  of  the funct ions  (5.6) and (5.7) and 
t h e i r  d e r i v a t i v e s  fo r  x = 0 :  

i 1 =[c,,r [ C~q)i(x) d x  C ' , , C  d x  3 

- 1  x 

(5.8) 

i 1 d x "  , d ' d:v 

-1  x 

(5.9) 

Noting ~v 1 (0) =0 and ~o 1 ( - x )  =-~01 (x), we find f r o m  (5.8) that  - C  2, =.C 2. F r o m  (5.9) we obta in  

C1 '=  tc---r~ e , "  

Noting f r o m  (5.7) tha t  ~o (1) =C1, q)l(1), we obta in  

--1 

Since 

(5.10) 

~, (l) < o, r (o) = d~n / dx* ~ - -  F (n) < o, c~ > o 

the s ign of ~o (1) c o i n c i d e s  with the  s ign of the d e r i v a t i v e  of the funct ion in the s q u a r e  b r a c k e t s .  Since C 1' < 
0 and C 2' < 0 fo r  ~ (1) > 0, it fo l lows by  the a l t e r n a t i o n  of  z e r o s  t h e o r e m  tha t  ~v (x) a l so  has  no z e r o s  on 
(0.D.  We show tha t  the d e r i v a t i v e  (5.10) is  equal  to ~T/ON. The condi t ion  x -*  0 c o r r e s p o n d s  to n ~  N. 

With  a l lowance  fo r  this and going o v e r  in {d[q~l-~idx/ch~]/dx}x~ f r o m  the v a r i a b l e  x to the v a r i a b l e  n, we 

can show that ,  to within a pos i t i ve  f a c to r  ~ / J ~ a ,  this  e x p r e s s i o n  is  equa l  to aT /aN.  The  decay  r a t e  F and 
the d e r i v a t i v e  a r / a N  have  the s a m e  s ign.  
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In conclusion, we should point out that s imi la r  questions relat ing to the stabil i ty of the solutions of non- 
l inear  equations in different  physical  p rob lems  have a l ready  been cons idered  in [7, 8]. 

The paper  [7] is comple te ly  devoted to the case  of an unbounded interval  ( - ~ ,  ~) ,  while in [8] only one 
special  fo rm of the generat ion function was considered.  

We thank A. M. Dykhne for d iscuss ion and comments .  

1. 

2. 

3. 
4. 

5. 

6. 
7. 

8. 

L I T E R A T U R E  C I T E D  

V. A. Zherebtsov and I. P. Stakhanov, wOn the ionizat ion-superheat ing instabili ty in a low-voltage 
arc  discharge,  w p r ik l .  Mekhan. Tekh. Fiz. ,  No. 3 (1971). 
D. A. Frank-Kamenetsk i i ,  Diffusion and Heat Transpor t  in Chemical  Kinetics [in Russian], Nauka, 
Moscow (1967). 
L. D. Landau and E. M. Lifshitz,  Mechanics,  2rid ed., Add i son-Wes ley  (1969). 
A. I. Loshkarev,  "Stabili l i ty of a low-voltage arc  discharge in sys t ems  with extended e lec t rodes , "  in: 
Third All-Union Conference on the Phys ics  of L o w - T e m p e r a t u r e  P la smas ,  Moscow, 1971. Abs t rac t s  
of P a pe r s  [in Russian],  Izd. MGU, Moscow (1971). 
A. A. Belokon'  and ]~. B. Sonin, mTheory of low-voltage are  in a thermionic  c o n v e r t e r , "  Zh. Tekh. Fiz. ,  
39__, No. 11 (1969). 
E. A. Coddington and N. Levinson, Theory  of Ordinary  Differential  Equations,  McGraw-Hill  (1955). 
G. I. Barenblat t  and Ya. B. Zel 'dovich,  "Instabil i ty of the propagation of f lames,  w Pr ik l .  Mat. Mekh., 
21__, No. 6 (1957). 
A. G. Is t ra tov and V. B. Librovich,  "Stabili ty of solutions in the s ta t ionary theory  of the rmal  explo- 
sions, w Pr ik l .  Mat. Mekh., 2__~7, No. 2 (1963). 

171 


