STABILITY OF LOW-VOLTAGE ARC WITH
NONEQUILIBRIUM IONIZATION

Yu. Yu. Abramov and G. G. Gladush UDC 533.93

A stability criterion is obtained for a low-voltage arc in the absence of ionization equilibrium.
It is shown that the stability depends on the properties of the generation function. The example
of a cesium arc of a thermionic converter illustrates the influence of a change of the electron
temperature on the stability of a plasma.

1. Theaim of this paper is to investigate the, stability of a low-voltage arc with nonequilibrium gen-
eration function in a practically important example — a cesium thermionic converter. The generation func-
tion may depart from equilibrium under the conditions of a cesium arc for many reasons — depletion of
the "tail® of the Maxwellian distribution, the presence of beam electrons, escape of radiation, diffusion of
excited atoms. The influence of each of these factors separately or together on the form of the function has
been studied on many occasions, since the generation function is important for the design of the arc and
the construction of the current —voltage characteristic of the converter.

Many people have noted that to construct the current —voltage characteristic it is important to know
the integral properties of the generation function, whereas the more subtle properties of this function are
important for the stability.

Without restricting ourselves to any particular form of the generation function, we formulate the prob
lem as follows: What properties must the generation function have for the system to be unstable ?

2. If the gradients of the electron temperature can be ignored, a low-voltage arc in cesium vapor is
described by the equation of ambipolar diffusion and the equation of electron heat conduction [1}:

— D d*n [ dz* = a? (T,) F (n) (2.1)
jV=2T o (T, /T, —1) + I v;n (2.2)

where D, is the coefficient of ambipolar diffusion, n is the plasma density, j is the current density, V is the
potential difference across the gap, I is the effective ionization potential, T, is the cathode temperature, x
is the coordinate perpendicular to the surface of the electrodes, F (n) is a nonmonotonic function of the
plasma density, a? (Te) is the generation function as a function of the temperature of the electrons, and

vi is the thermal velocity of the ions.

The function F (n, Te) in the general case cannot be represented as a product, though, as we shall see
below, in this case this is not important and is introduced for clarity. Allowance for the escape of radiation
in the energy-balance equation does not lead to qualitatively new results.and, therefore, in what follows it
will be ignored for simplicity. To (2.1) and (2.2) one must add the boundary conditions for a developed
are [1}:

n1ve P, dn

f=in—rexp (—4¢), Dl T 2.3)
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where n; and n, are the plasma density at the cathode and the anode; ¢, and ¢, are the discontinuities of
the potential at the electrodes; ve is the thermal velocity of the electrons; and 2d is the distance between
the cathode and the anode (the gap). Because of the symmetry of the boundary conditions (2.3) and (2.4),

n, =n,.
Equation (2.1) is similar to the equation of motion of a particle in a potential well with energy u=

n

SF (n) dn, the role of the particle coordinate being played by n and the role of the time by x. To within a

o
term of order l/d, the plasma density on the boundary can be set equal to zero (I is the electron mean
free path). Then the problem consists of finding a point N=n (x=0) such that if the particle begins its
motion at this point with zero velocity [because of the symmetry of the solution (dn/dx), _,= 0]it arrives
at the point with coordinate n=0 in a "time" equal to a given value (half the gap d). Integrating (2.1), we
obtain

i ,
do_ _ __t dn (2.5)
VD, el V2 S Vu(¥)—u(n)

]

We shall call 7 (N) the period. Going over in (2.5) to integration over u, we can write

E
4 ¢ (dn/du)du (2.6)
T(E)= V§§ Vi

where E =u (N) is the "total energy® of the particle.

Depending on the form of the potential u (n), 7 is a function of the amplitude N [or 7(E)] may be non-
monotonic [2], i.e., to one value of 7, or a, there may correspond two or more values of N. It is necessary
to establish what properties the "force® F must have if 7 (N) is to be a nonmonotonic function. For this,
using the integral Abel equation (2.6) we must express u (n) in terms of 7 (N) [3]:

n(w) = _1__5 * (B)dE 2.7)
[}

Since F = 0, the dependence of u on n [or E (N)] is monotonic —u and n are related one-to-one; know-
ing n (u) we can find u (n). Specifying different nonmonotonic dependences 7 (N) one can show that non-
unique solutions (2.1) can also hold for smooth functions F (n), and F (n) may even change curvature.

The multivaluedness of the solutions depends on subtle properties of the generation function, and
therefore an approximate method used to determine the ambiguity of the solution from the form of the func-
tion F (n), used, for example, in [2, 4], i8 restricted.

If there are two or more solutions, the solutions for which 87/8N < 0 are unstable and the solutions
with 87/8N >0 are stable. This will be proved below under the assumption that the electron temperature
does not change.

3. To determine the instability region as a function of the external parameters (current, voltage,
etc.), it is necessary to construct the current—voltage characteristic of the arc. The potential difference
across the gap is composed of the potential difference across the plasma, Pps and the difference of the
electrode discontinuities of the potential. To within a quantity of order of 1/d, the latter can be found from
the boundary conditions with allowance for n; =ny:
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O — @, =T, Inj/jr{t —j//jr) (3.1)
The potential drop across the plasma can be found by integrating the equation for the electron current:
Jo=—D,dn/dx + undp / dx (3.2)
where u, is the electron mobility and ¢ is the potential of the plasma.

Since the variation of the electron current over the gap is small, with allowance for (2.5) we obtain

N
_ i ( d V3, j ¢ dn 3.3)
P = S - > nfu(Ny—u(n)] (

The value of n; can be found from (2.3) by noticing that this is the "velocity” of the particle at the end
of the trajectory:

ny(N) =2V 2Du (N o.(N)/ v; (3.4)

Using (3.4) we must eliminate n; from (3.3) and (2.2). The total voltage across the gap can be ob-
tained from (3.1) and (3.3):

V=9 — %+ o (3-5)

For the two unknowns V and N (we assume the current is given) we have the two equations (2.2) and
(3.5). These equations constitute the current—voltage characteristic in parametric form (N is the param-
eter). If F ~ n, then all the integrals can be expressed in elementary functions and the current —voltage
characteristic is obtained with a section of negative differential resistance (see curve 1 in Fig. 1) [1]. As
follows from (2.5), the dependence T, (N) is a straight line parallel fo the abscissa (see curve 1 in Fig. 2).
If T, depends nonmonotonically on N (the curves 2 and 3 in Fig. 2) the nonmonotonicity of V as a function of
j is expressed to a greater degree than when Tg =const (curves 2 and 3 in Fig. 1).

Although o may vary appreciably, T varies little, since o usually depends on the electron tempera-
ture exponentially:

a? = aaze'I/Te (3.6)

At low currents through the device, N is small. Almost all the potential difference occurs across
the plasma. This section of the current —voltage characteristic can be obtained from (2.2). Since N is
small, the jonization losses can be ignored, and therefore V =2T, (Te/Te~1) jr/j and the voltage decreases
with increasing current, dV/dj< 0. If Tg (N) is nonmonotonic, the temperature decreases with increasing
N (at low plasma densities and therefore at low currents). This means that dv/dj becomes even smaller.
With increasing N, the potential difference across the plasma, Pps decreases and the main losses of energy
from the plasma are ionization losses:

iV = 2V 2D (N) Ia. (N) 8.7
Multiplying (3.1) by j and ignoring $p» We obtain
2V 2D (Ny I (N) = T,jlnj/jr (1 —j/jr) (3.8)

It can be seen from (3.8) that with increasing N the current density increases, and then so does V in
accordance with (3.1). Since Te increases with increasing N at high densities (see Fig. 2), the derivative
dv/dj is greater than in the case T, =const. These conclusions agree gualitatively with the calculations of
a thermionic converter on a computer made in [5], where it was shown that when allowance is made for the
escape of resonance radiation and the diffusion of excited atoms the negative section of the current —voltage
characteristic is appreciably increased. Allowance for the escape of resonance radiation and diffusion of
excited atoms means that the generation function at low plasma densities is proportional to n?. In this case
a (and, accordingly, Te) is 2 nonmonotonic function of N, as was assumed above. For some discharge
parameters, the point 87/9N =0 may lie on a section of the current—voltage characteristic with dj/dv > 0.
This means that the instability can also occur on a positive section of the characteristic (see curve 2 in
Fig. 1).

4. The instability condition is derived with neglect of perturbations of the electron temperature. We
now obtain condiftions under which this is justified.
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Varying (2.3) and (2.4), we find

_(?[_ IR _6n2—6n1 8T vV 112 4.1
T T T T @1
D, —bén lx__.d =3 6"1, D ——6” lx_d == ——6’52 (4.2)

adv

Let us consider the case of high currents, which is clearly of most interest. In this case, the poten-
tial difference across the plasma can be ignored. The nonstationary equation for the perturbations of the
electron temperature has the form

Voj + j8V = 2/r8T + Y, Iv, (8ny + Ons) + 2uky?ddT — 3TdANST (4.3)

where » is the coefficient of electron thermal conductivity.

In (4.3) we consider perturbations of the plasma parameters along the electrodes with wavelength
A =2m/ky, their time dependence being represented in the form exp (— I't).

Together with the nonstationary equation of ambipolar diffusion for the perturbations

on = at ST on +Fﬂ2_aT @4.4)

n |n=nyx)

—I'én + D k,*0n — Da d 5

Egs. (4.1)-(4.3) form a closed system of homogeneous equations, from which the decay rate I'can be
determined.

It is not possible to obtain a solution of (4.4) in the general case. We must therefore consider how
the stability is affected by the term with 6T in (4.4), whose properties without this term will be investi-
gated below.

For the same reasons as in the stationary case
8ny = On, (4.5)

This enables us to omit (6n;—6n,) in (4.1). Depending on the load resistance, one must consider
several cases.

The case 6§V =0 can occur when in the external circuit the voltage is given or when, for given current,
one has perturbations along the electrodes, ky # (0. Suppose ky —0.

As follows from (4.1), the current and the temperature vary in antiphase. With allowance for (4.2),
we obtain the connection between the perturbation of the temperature and the density 6n; on the boundary:

or Toym dm (4.6)
T, Ve (jg—1 T, ip+2/gt, m

Substituting (4.6) into (4.4), we find that the perturbation of the temperature in the given case is a
stabilizing influence. For currents j £ jg this influence can be ignored if

]/”‘ ¢l Te 4 @.7)

For large currents (j = jp) the second term on the right side of (4.4) is greater than the first and the
ratio of these terms is of order

I ]/m ¢/Te>1 (4.8)

In this case the state of the plasma is stable.
If 56j=0 and ky=0, a variation in the external circuit increases the temperature:

oV vV or

T, T, T,
and at currents near jr an increase of the temperature increases the plasma density:;

GT I”inl 8n1

le 14 m

Such a dependence enhances the instability.
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¥ 5V=0, ky #0, j ¥jR, the high electron thermal conductivity will equalize the perturbation of the
electron temperature, reducing the stabilizing influence. For this, ky must be sufficiently large:

I \*y/m
) V<t

On the other hand, waves that are too short would be damped because of diffusion of particles along
the electrodes., If this is not to happen, we require

k2d2 << &°T | D,
Thus

(T[T V m M << 4k, d?* < 4d2T/D, (4.9)

If these conditions are satisfied, the term with T in (4.3) is small and the variation of the electron
temperature can be ignored. One can estimate T" by setting it equal in order of magnitude to the derivative
of the rate of ionization, since the process of nonequilibrium ionization is responsible for the instability.
For the characteristic conditions of operation of the converter considered, for example, in [5] (Pgg=1 mm
Hg, jg =0.66 A, d=0.5 mm, T =3000°K) the rate of ionization is proportional to n? and therefore 4I‘d2/Da >
1. The condition (4.9) can be satisfied and in the system an instability can therefore develop with charac-
teristic wavelengths exceeding the gap width by an order of magnitude.

5. We prove that the decay rate T has the same sign as the derivative 87 /0N. The equation for the
perturbation of the plasma density in the gap without allowance for the perturbation of the temperature is

(5.1)

—Tén—D, 2 n = a&!%f—[nzno(x) n(z)

In (5.1) the time dependence is chosen in the form exp (— I't) and n, is the stationary solution. We
introduce the new notation

-9

2]

Dy

52 OF
—F, T2

D, on =U(z), on=1y() (5.2)

n==re(x)

With allowance for this, (5.1) can be written in the form
="+ Uy =By (5.3)
with the boundary conditions ¥ (—1) =y(1) =0.

In (5.3) the coordinate x is made dimensionless by division by d. This equation has the form of a
Schrédinger equation for a particle with potential U (¥). Depending on the form of the stationary solution
n (%), i.e., on the form and depth of the potential well U (x), the energy levels may be negative or positive,
If the lowest level E; is negative, the system is unstable; if positive, stable, since T and E have the same
sign. The properties of this ground state will be investigated subsequently. We show first that the sign of
the ground level is the same as the sign of the function ¢ (x=1), which is a solution of the equation

— 9"+ U(z)p =0 (5.4)
with the boundary conditions
d
@(—1)=0, E‘% >0

(Cauchy problem).

For E; =0, the solutions of Eqs. (5.3) and (5.4) are the same, and then ¢ (1) =0. If ¢ (1) <0, there is
a point x; < 1 such that ¢ (x)) =0. Since the number of zeros on the interval (— 1, 1) is a monotonic function
of the energy [6], and the energy corresponding to the function ¢ (x) is zero, the energy E; corresponding
to the {ynction ¥ (x), which has no zeros on the given interval, is less than zero. If ¢ (1) >0,then because
¢ (%) inthis case has no zeros (see below) on the interval (—1, 1), the point %, lies to the right of unity.
Since ¥ (x) vanishes over the extended interval (—1, x;) (at the point x=1), the energy corresponding to it
is greater than zero.

The sign of the function ¢ (%) for x=1 coincides with the sign of the energy level of the eigenvalue
problem (5.3). It is necessary to calculate the value of this function at x=1.
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One solution of Eq. (5.4) is known:
Py = dny/dz (5.5)

This can be seen by substituting (5.5) in (5.3) and comparing the resulting equation with the differen-
tiated Eq. (2.1).

We find a second solution ¢, (%) of (5.4) from the condition of conservation of the Wronskian:
PP — @ (P1‘ = C,
We obtain
¢ 4 (5.6)
¢ (@) = G191 + Coy Sl ﬁ

Since
o (1) = [(20%/ D,) SFdn] >0

we find C,; =0 from the condition ¢ (—1) =0. From C,;=0 we find (dp /dz) >0 . Note here that, by the

X=—1

alternation of zeros theorem [6], the function ¢ has no zeros on (0, —1).

The solution of (5.6) with C; =0 does not apply for x >0, since when x=0 the integral diverges on
account of ¢, (0) =0. Therefore, for x >0 the solution of (5.4) can be written in the form

1
¢ (2) = Ci'py (2) + cg'cPIS% (6.7)

The constants C,' and C,' are found from the conditions of continuity of the functions (5.6) and (5.7) and
their derivatives for x=0;

[ng}l () S [ ]x—~> —0 [Cl e (2) + G’ (x)S @12 L—»—(—o (5.8)
€5 [m@ 5 2. = em@+ o e 5%-]}_% (5.9

Noting ¢, (0) =0 and ¢, (—x) =—¢, (%), we find from (5.8) that ~C,’ =§32. From (5.9) we obtain

o=y oo § 5T

Noting from (5.7) that ¢ (1) =C,’ ¢4(1), we obtain

ot =2 28 (ot o § ], o0

Since
e (1) <0, 9/ (0) =dPn[de* ~ — F(n) <0, C, >0

the sign of ¢ (1) coincides with the sign of the derivative of the function in the square brackets. Since C,'<
0 and C,' <0 for ¢ (1) > 0, it follows by the alternation of zeros theorem that ¢ (x) also has no zeros on
(0.1). We show that the derivative (5.10) is equal to 87/6N. The condition x— 0 corresponds to n— N.

With allowance for this and going over in { [{pl S dx /g, ] / dz}x_m from the variable x to the variable n, we

can show that, to within a positive factor o/ \/'D;, this expression is equal to 87/8N. The decay rateI’ and
the derivative 97/8N have the same sign.
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In conclusion, we should point out that similar questions relating to the stability of the solutions of non-

linear equations in different physical problems have already been considered in [7, 8].

The paper [7] is completely devoted to the case of an unbounded interval (—e, ), while in [8] only one

special form of the generation function was considered.

We thank A. M. Dykhne for discussion and comments.
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